Application of the EBS NRS nanobeam in thin-film magnetism

D.L. Nagy¹, L. Deák¹, D. Merkel¹, H. Spiering²

¹Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary

> ²Institut für Anorganische und Analytische Chemie, Johannes Gutenberg Universität Mainz, Mainz, Germany

EBS-Workshop on Nuclear Resonance Scattering ESRF, Grenoble, France, 11-12 March 2019

Outline

- Motivation
- Feasibility of NRS scanning magnetic microscopy with nanobeams
- Domain transformations in antiferromagnetically coupled multilayers
- Evolution of magnetism on a curved nano-surface
- Applications at grazing incidence
- Conclusions

Motivation

Arrangement of an SMR experiment

Motivation

- Off-specular SMR yields information in the reciprocal (momentum) space only so that no individual objects in the direct space can be identified.
- In case of 57 Fe SMR, the method is practically limited to the correlation length range of about 200 nm to 2 μm .
- Is there a chance to see thin-film magnetic phenomena in this range in the direct space using the EBS NRS nanobeam?

Feasibility of the approach

- Forward scattering in thin films: is it possible at all?
- Electronic absorption: for low-Zsubstrates may be low enough.

Substrate material	Transmission of 500 µm thickness for 14.41 keV
SiO ₂ (quartz)	0.4093
MgO	0.3873
α-Al ₂ O ₃ (sapphire)	0.3097
Si	0.2469
BaTiO ₃	2.8×10^{-7}

• Effective thickness for ⁵⁷Fe: $\lambda = 46 t [nm] f$

Feasibility: contrast of the hyperfine field direction (Smirnov figures)

Feasibility: contrast of the hf field direction

- Hyperfine field in the y-z plane: contrast between B||y and B||z in linearly polarized light.
- Hyperfine field along the x axis: contrast between $B \uparrow \uparrow x$ and $B \uparrow \downarrow x$ in circularly polarized light.

Antiferromagnetically coupled Fe/Cr multilayer

Layer magnetisations:

Giant magnetoresistance

Antiferromagnetically coupled Fe/Cr multilayer

A. Fert and P. Grünberg Nobel Prize in physics, 2007

Giant magnetoresistance

Patch domains in AF-coupled multilayers

Layer magnetisations:

The 'magnetic field lines' are shortcut by the AF structure → the stray field is reduced → no 'ripple' but 'patch' domains are formed.

Spin-flop-induced domain coarsening (SMR)

MgO(001)[57 Fe(26 Å)/Cr(13 Å)] $_{20}$ 2 Θ @ AF reflection, easy axis

by Consubstration length: $\xi = 1/\Delta Q_x$

Delayed photons before the spin flop

 $\xi = 1000 \text{ nm}$

Delayed photons after the spin flop

 $\xi_1 > 5000 \text{ nm}$ $\xi_2 = 1000 \text{ nm}$

> ESRF TD18

D.L. Nagy et al., PRL 88, 157202 (2002).

Domain coarsening during spin flop

What can we see from domain coarsening?

- No contrast between and The initial picture is homogeneous.
- No contrast between and
 The final picture is homogeneous.
- The intermediate pictures show the step-by-step progress of the spin flop and the creation of the large domains.
- Can we still have a contrast between domains of the same alignment but opposite direction of the layer magnetization?

What can we see from domain coarsening?

- To have a contrast between hyperfine fields of opposite direction, photons of circular polarization are needed \rightarrow insert a $\lambda/4$ phase-retarder plate!
- AF-coupled domains still have both directions of the hyperfine field \rightarrow the sample should be prepared by marking every second layer with the resonant isotope 57 Fe.
- To have a k-parallel (i.e. x-parallel) component of layer magnetization, the sample should be tilted (e.g. by 45°) around the z-axis.

Domain coarsening during spin flop

From saturation to remanence: the domain ripening

- In decreasing field the domain-wall angle and, therefore, the domain-wall energy as well as its surface density is increasing.
- In order to decrease the surface density of the domain-wall energy, the multilayer spontaneously increases the average size of the patch domains ('ripening').
- The spontaneous domain growth is limited by domain-wall pinning (coercivity).

Domain ripening: off-specular SMR

MgO(001)[⁵⁷Fe(26Å)/Cr(13Å)]₂₀ 2Θ @ AF reflection, hard axis

ESRF ID18

Domain formation and ripening

Domain pattern

Autocorrelation -

Domain ripening at $H_c = 4.2$, D = 5.5

What can we see from domain ripening?

- To have a contrast between hyperfine fields of opposite direction, photons of circular polarization are needed \rightarrow insert a $\lambda/4$ phase-retarder plate!
- AF-coupled domains still have both directions of the hyperfine field \rightarrow the sample should be prepared by marking every second layer with the resonant isotope 57 Fe.
- To have a k-parallel (i.e. x-parallel) component of layer magnetization, the sample should be tilted (e.g. by 45°) around the z-axis.

Si substrate/nanosphere: OK

5-50 nm ⁵⁷Fe: may be OK

D. Merkel et al., Nanoscale, 7, 12878 (2015).

Skyrmions in thin films?

F.N. Rybakov et al, New J. Phys. 18, 045002 (2016).

Improved lateral resolution using the nonfocussed 50 µm beam at grazing incidence

Monolayer resolution can be achieved by using the resonant isotope marker technique.

In a Co/Fe(7ML)/Co trilayer, the magnetisation of the Fe layers at the Co/Fe interface is parallel while that of the internal Fe layers is perpendicular to the plane.

C. Carbone et al, ESRF Highlights 1999, 60 (1999).

Acknowledgements...

