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Motivation

® Off-specular SMR yields information in the
reciprocal (momentum) space only so that no
individual objects in the direct space can be
identified.

® TIn case of >’Fe SMR, the method is practically
limited to the correlation length range of about
200 nm to 2 um.

® Ts there a chance to see thin-film magnetic
phenomena in this range in the direct space using
the EBS NRS nanobeam?



Feasibility of the approach

® Forward scattering in thin films: is it possible at
all?

® Electronic absorption: for low-Zsubstrates may
be low enough.

SiO, (quartz) 0.4093
MgO 0.3873
a-Al,O; (sapphire) 0.3097
Si 0.2469
BaTiO, 2.8 x 107

® Effective thickness for °’Fe: 1=46 ¢t[nm] f



Feasibility: contrast of the hyperfine
field direction (Smirnov figures)
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Feasibility: contrast of the hf field direction

® Hyperfine field in the y-z plane: contrast between
B|ly and B||z in linearly polarized light.

® Hyperfine field along the x axis: contrast between
BTTxand BNxin circularly polarized light.



Antiferromagnetically coupled
Fe/Cr multilayer

Layer magnetisations:
_—
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Giant magnetoresistance




Antiferromagnetically coupled
Fe/Cr multilayer
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A. Fert and P. Griinberg
Nobel Prize in physics, 2007




Patch domains in AF-coupled multilayers

Layer magnetisations:
—_
E—————
The 'magnetic field lines’ are
shortcut by the AF
structure — the stray field

is reduced — no ripple’ but
‘patch’ domains are formed.




Spm flop-mduced domam coarsening (SMR)
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Domain coarsening during spin flop




What can we see from domain coarsening?

® No contrast between <= and -
The initial picture is homogeneous. ®

® No contrast between and\l/

The final picture is homogeneous. ®

® The intermediate pictures show the step-by-step
progress of the spin flop and the creation of the
large domains. ©

® Can we still have a contrast between domains of
the same alignment but opposite direction of the
layer magnetization?



What can we see from domain coarsening?

® To have a contrast between hyperfine fields of
opposite direction, photons of circular polarization
are needed — insert a ./4 phase-retarder platel

® AF-coupled domains still have both directions of
the hyperfine field —» the sample should be
prepared by marking every second layer with the
resonant isotope °’Fe.

® To have a k-parallel (i.e. x-parallel) component of
layer magnetization, the sample should be tilted
(e.g. by 45°) around the z-axis.



Domain coarsening during spin flop




From saturation to remanence:
the domain ripening

® Tn decreasing field the domain-wall angle and,
therefore, the domain-wall energy as well as its
surface density is increasing.

® Tn order to decrease the surface density of the
domain-wall energy, the multilayer spontaneously
increases the average size of the patch domains

(‘ripening’).

® The spontaneous domain growth is limited by
domain-wall pinning (coercivity).



Domain ripening: of f-specular SMR

MgO(001)[5’Fe(26A)/Cr(13A)],
20 @ AF reflection, hard axis
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Domain formation and ripening

Magnetization curve H =42, D=55
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What can we see from domain ripening?

® To have a contrast between hyperfine fields of
opposite direction, photons of circular polarization
are needed — insert a ./4 phase-retarder platel

® AF-coupled domains still have both directions of
the hyperfine field —» the sample should be
prepared by marking every second layer with the
resonant isotope °’Fe.

® To have a k-parallel (i.e. x-parallel) component of
layer magnetization, the sample should be tilted
(e.g. by 45°) around the z-axis.



Evolution of magnetism on a curved nanosurface

E-beam evaporator

Detector UHV (8x10** mbar)
§ Ko Ki
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X-ray reflectivity
Nuclear Forward Scattering



Evolution of magnetism on a curved nanosurface

Reflectivity of 35 A Fe on flat substrate

s e T A oy criticallanglelof silitlaon 3
E - 114 E
1
I
|

-«——critical angle of iron

3 1

5 : :

4 1.92mrad ! E
011 1 3

| DL DL L |
0 2 4 6 8 10 12 14 16 18 20

a) Theta (mrad)
Flat 25 nm 400 nm
3
1
1
:
1
2 3
S
o
o ]
1
1
3
0 0 50 100 150 200 T ) 201
- . ime (ns
b) Time (ns) C) Time (ns) d)



Evolution of magnetism on a curved nanosurface
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Evolution of magnetism on a curved nanosurface

.-

Micromagnetic simulation



Evolution of magnetism on a curved nanosurface
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D. Merkel et al., Nanoscale, 7, 12878 (2015).



Skyrmions in thin films?

¢ Skyrmion tube (e) Skyrmion tube (f) Chiral bobbers

H = in bulk | H Smen” in thin film H ~==-"_in thin film

T ' 1 N ¥R 1‘ Y3 Kbty

f. (5 A
1 ¢ 1
{" L L
Bloch points
I Mo . Sl *'0

F.N. Rybakov et al, New J. Phys. 18, 045002 (2016).



Improved lateral resolution using the non-
focussed 50 um beam at grazing incidence
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Co
Fe

Co
Cu

Monolayer resolution can
be achieved by using the
resonant isotope marker
technique.

In a Co/Fe(7ML)/Co
trilayer, the magnetisation
of the Fe layers at the
Co/Fe interface is parallel
while that of the internal
Fe layers is perpendicular
to the plane.
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