

Introduction to resistively heated DAC techniques

Max Wilke
Universität Potsdam
with material by C. Schmidt
& A. Rosa

Outline

- Resistive Heating?
- Technical Concepts
 Hydrothermal DAC
 Resistively Heated DAC for Megabars
- Using resistively heated DACs
- Examples of Application

Why using resistive heating?

Pressure (GPa)

H.P. Liermann, DESY Hamburg

- Temperatures below 1500 K
- precise T-Control

Hydrothermal DAC vs. DAC f. Megabars

ESRF-type DAC

Hydrothermal DAC - HDAC

Rev. Sci. Instr. 64, No. 8, August 1993

A new diamond anvil cell for hydrothermal studies to 2.5 GPa and from -190 to 1200 °C

```
W. A. Bassett, A. H. Shen, and M. Bucknum

Department of Geological Sciences, Snee Hall, Cornell University, Ithaca, New York 14853

I-Ming Chou

959 National Center, U.S. Geological Survey, Reston, Virginia 22092

(Received 22 February 1993; accepted for publication 12 May 1993)
```

particularly used for experiments with hydrous fluids e.g.

```
23 GPa at 750 °C (Lin et al., 2004)
1025±10 °C at ~2 GPa (Audétat & Keppler, 2005)
```

HDAC Construction

HDAC Construction

upper and lower platen

precise T control (± 0.1 K) small T gradients fast T stabilization accurate T measurement

HDAC Construction

- HDAC on stage of Micro-Raman spectrometer
- Cell body is flushed with H₂-bearing gas (Ar, N₂) to prevent oxidation of parts

C. Schmidt, GFZ Potsdam

Temperature Calibration

Melting points at ambient pressure, eg. NaCl, 800.7°C
 CsCl, 645°C
 K₂Cr₂O₇, 398°C
 NaNO₃, 306.8°C

Triple point of H₂O
 Ice I + liquid + vapor at 0.1°C, 0.6 kPa
 Ice I + Ice III + liquid at -21.985°C, 209.9 MPa

Temperature Calibration

• α - β quartz transition: displacive, little hysteresis observation using crossed polarizers cut II c-axis 75 μ m thick

Pressure determination

 Phase transitions and equation of state of the pressure medium (fluid)

Pressure calibrants

X-ray diffraction: e.g. Au, Pt

Raman or Fluorescence lines:

fluorescence sensors: e.g. ruby, Sm:YAG

Raman sensors: e.g. α-quartz, zircon

Pressure determination phase transitions and EoS of fluid

Pressure determination EoS of H₂O for dilute solutions

equation of state: Wagner and Pruß (2002)

Pressure determination v₃(SiO₄)-band zircon (ZrSiO₄)

∨₁₀₀₈: to ~1000 °C, to ~10 GPa Schmidt et al. 2013

Ruby Fluorescence?

- at high T:
 two peaks merge
 intensity decreases
 → non-linear frequency
 shift with T
- above 300°C pressure determination difficult

Reaching conditions beyond HDAC

H.P. Liermann, DESY Hamburg

External Heating

Angelika Rosa, ESRF

External heater ring

External Heating

- T limited to 600°C
- Slow T stabilisation, 20 min
- Accurate T measurement

T diamond = 305°C T sample = 306.4°C

Internal Heating

- T limited to 1200°C
- fast T stabilisation, immediate
- Accurate T measurement

New ceramic junctions for electrical contact outside the cell

- New internal heating design
- liquid graphite, T-stability > 3000°C

Implementation at Beam line

BM 23 (ID 24 DCM)

- ✓ XAS
- ✓ XRF
- ✓ XRD
- ✓ Beam size $3*3 \mu m^2$
- ✓ 5-40 keV

ID 27

- ✓ XRF
- ✓ XRD
- ✓ Beam size 1*1 μ m² (-> 0.15 μ m)
- ✓ 20-30 keV

With courtesy of A.D. Rosa and G. Garbarino

 first test runs at ID27 at ambient pressure using hex-BN and Pt as test samples

Applications of HDAC and RH-DAC

- optical microscopy, microthermometry
- Raman & IR spectroscopy
- synchrotron radiation X-ray fluorescence and absorption spectroscopy
- inelastic X-ray scattering (X-ray Raman spectroscopy)
- Brillouin spectroscopy
- electrical conductance
- XRD
- Zircon solubility and Zr complexation in fluids at high P&T
- H₂O at high P&T
- Silicate Melts/Glasses at extreme pressure

X-ray spectroscopy with HDAC

modified after Schmidt & Rickers 2003, Schmidt et al. 2007

Con-focal XRF detection

Beam

Schmitz et al. 2009

Confocal XRF: Calibration

Standard Solution in HDAC with 1300 ppm Zr

21 keV excitation

Detection limit < 1 ppm for Zr

Wilke et al. 2010

Mobilisation and Transport of Zr

 Zircon (ZrSiO₄) in low-grade (350°C) meta-sediments

Zircon solubility in aqueous fluids

Aqueous Fluids containing Na₂Si₃O₇

Aqueous Fluids containing NaOH (baddelyite)

Zr-complexation in fluid?

RIXS or HERFD-XAS on traceelements in aqueous fluids at P & T

Rowland Spectrometer at ID26 @ ESRF

RIXS:

Resonant Inelastic X-ray Scattering **HERFD-XAS**:

high energy resolved fluo detected - XAS

Zr 1s2p RIXS plane

HERFD-XANES vs. normal XANES

normalized absorbance

Zr Complexation from HERFD-XANES

Normalized Intensity

8-fold coordinated Zr

7-fold coordinated Zr

6-fold coordinated Zr

XANES taken on Fluids at P and T

Zr Complexation from HERFD-XANES

Energy [eV]

calculated with Feff

XANES taken on Fluids at P and T

Wilke et al. 2012

Zr Complexation from HERFD-XANES

Cluster based on Vlasovite Na₂ZrSi₄O₁₁

XANES taken on Fluids at P and T

Wilke et al. 2012

X-ray Raman Scattering with HDAC

Structure of supercritical H2O H-bonding

Sahle et al. (2013) PNAS, doi: 10.1073/pnas.1220301110

Silicate Glass/Melt at extreme pressures

BM 23, externally heated DAC

Cross Section Earth

Ge-doped Silicate Glass/Melt atextreme pressures

Ge-doped Silicate Glass/Melt at extreme pressures

Krstulovic et al. in prep.

Conclusion

- Resistively Heated DAC usable up to ca. 1500 K
- Precise Temperature Measurements
- HDAC for work with aqueous fluids
- RH-DAC for Megabars are complementary to Laser-heated DAC
- XRD, XRF, XAS, Raman spectr. etc.

