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Diamond-anvil 
cells 

LVP for high-pressure experiments  

Sample size 

Pressure  
(with T) 

cm 

mm 
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microns 

10 
microns 

100 MPa 1 GPa 10 GPa 100 GPa 

Multi-anvil, RDA, 
DDIA, DT-cup, 

Paris-Edinburgh 
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cylinder 
Griggs, 

Paterson 



More on LVP and synchrotron 
adaptations 
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Multi-anvils at synchrotron beamlines (maybe non exhaustive) 

ID06LVP - ESRF 
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Large volume presses 

LVP – ID06 ESRF 

 
In-situ properties under HP-HT  
q  Phase stabilities (solid, melting…) 
q  Kinetics of reactions 
q  Viscosity 
q  Strength, brittle behavior 
q  Electric conductivity P-T dependence  
q  Elastic properties 
q Melt properties (density, etc.) 
q  Thermal diffusivity 
… 
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Large volume presses 

LVP – ID06 ESRF 

 
q  Large volume (mm3): statistics ! 
q  Small P and T gradients 
q  Stable P and T over days 
q  Investigate grain size dependences 
q  Tunability of the cell assemblies 

BUTs  
q  no easy access to sample 
q  hours for loading-unloading stages 
q  T & P limited compared to DAC.  
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Main synchrotron X-ray probes with multi-anvil  

¤  X-ray diffraction ¤  X-ray imaging 
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Beamline basic setup: imaging + diffraction 

image 



9 

High-pressure, large volume x-ray 
‘transparent’ environment:  

octahedric assemblages 

www.synchrotron-soleil.fr  

R. Farla, https://petra3-extension.desy.de 

Anvils: 
§  All WC 
§  cBN 
§  Sintered diamond 
§  … 
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High-pressure, large volume x-ray ‘transparent’ environment: 
beam vs. cell assembly 

monochromatic beam white beam 

Beyer et al, 2018 

sample 
sample 
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High pressure, large volume x-ray ‘transparent’ environment: cubic 
assemblages 

T. Ferrand 2017 

Anvils: 
§  cBN 
§  Sintered diamond 
§  … 
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Pressure transmitting medium: 
§  amorphous Boron + epoxy 
§  fired pyrophyllite (cube or bone-dry sphere) 
§  Cr,Co doped MgO 
 !!  am. B-epoxy windows if mono beam 
 
Furnaces: graphite 
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On temperature gradients 
vs. cell material 

Raterron et al, RSI 2013: using 
XRD, gradient up to 150 K / mm 

Al2O3 κ = 6 to 8 W.m-1K-1 (1100K-1700K) 
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On temperature gradients 
vs. cell material 

Raterron et al, RSI 2013: using 
XRD, gradient up to 150 K / mm 

Al2O3 κ = 6 to 8 W.m-1K-1 (1100K-1700K) 
YSZ (Y-ZrO2) : κ = 2 W.m-1K-1  (1300 K) 
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On high temperatures and mechanical stability 
of a LVP cell  



LVP for deformation 
 
synchrotron XRD raised a major 
obstacle for deformation studies 
under HP :  
above pressures of 2 GPa frictions 
at too high to use conventional 
stress gauges. 
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High-pressure environment for deformation: D-DIA 

LVP – ID06 ESRF 

constant volume deformation at HP-HT  
(20GPa, 1800K) 

 
In-situ properties under HP-HT + stress 
q  viscosity, strength 
q  deformation mechanisms, defects 
q  Transformation mechanisms under 

stress 
q  electric or elastic properties vs. crystal 

preferred orientation, … 
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High-pressure environment for deformation: D-DIA 

Nishiyama et al, 
2008, Kawazoe 

et al, 2009 

D-Dia double-stage, APS 

D-Dia ‘simple stage’ 
APS GSECARS 

9 mm 

3 cm 



18 

Yamazaki and Karato, 2001 

Opposed anvils configurations:  
Rotational Drickamer Apparatus (RDA) 

q  Portable. Mostly operated at NSLS. 
q  25 GPa, 2000 K 
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Opposed anvils configurations:  
High Pressure X Tomography Microscope (HPXTM) 

q  Specificity : large volume.  
q  8-10 GPa. 

Uchida et al, 2004 



LVP and synchrotron  
x-ray data 
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X-ray imaging 

q  track boundaries and 
objects (deformation, 
diffusivity…), objects, 
densities … (more: J-P. 
Perrillat and Y. Le Godec’s 
talks) 

q measure length (VP-VS at 
high P-T) 

q  cross-correlation on image 
pairs (sub-pixel, complex 
geometries) 

absorption contrast 

-> strain (rate) 

 P. Raterron 
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X-ray imaging 

Pt strips 
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X-ray imaging 

Sine-wave on furnace: 
+-30 to 50°C 

è κ = f(P, T)  
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Diffraction 



LVP and x ray data for in 
situ deformation 
Or how stress shows up in  
x-ray diffraction 
(polycrystal) 



26 

X-Ray diffraction : under high pressure 

δ = 0° 

δ = 90° 

δ 
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δ = 0° 

δ = 90° 

δ 

X-Ray diffraction : under high pressure + non 
hydrostatic stress 

2θ

« lattice strain » 
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Stresses under high pressure (uniaxial) 

σP : mean stress 
= « hydrostatic 
pressure » = P deviatoric stress 

 P and t can be obtained simultaneously and 
for each phase 

P + t 

2θ

P 
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Stresses under high pressure (uniaxial) 

2θ

pressure: 
equation of state 

Lattice strain 
-> stress with Cij 
 

δ

with cosφ = cosδ.cosθ

Multifit-Polydefix, Merkel and Hilairet, 2015.  
Singh et al, 1998, Uchida et al, 1996 
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Stress from olivine cryst. 
plane:

< t(hkl) > 
plastic 
relaxation 

< t(hkl)> = non-hydr. stress on sample ? 
Not so simple.  
Models are necessary to calculate absolute stresses. 

G(hkl) from the Cij. 
elastic theory,  
Singh et al, 1998, Uchida et al, 1996 
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Energy Dispersive configuration (NSLS, APS ID6) 
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δ 
local lattice strains 

(crystal to crystal and 
intra-crystalline)  

-> peak broadening 

X-Ray diffraction : stresses under high pressure 



Case study : stress 
partitionning in two-phases 
aggregates under HPT 
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load bearing frame 
controlled by strong phase 

interconnected weak layer 
controlled by weak phase 

Handy, 1994 

q  Which material is the weakest / strongest? 
q  How do stress and strain partition in the phases?  
q  [What is the viscosity of the aggregate ?] 

multi-phase polycrystal deformation 

Increasing weak phase amount 

Increasing strain 
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Serpentine + olivine aggregates deformation 
at 300-350°C, 3 to 4 GPa, ca. 2.10-5s-1 

 
varying weak phase content (5 to 50%) 

compare to pure phase 
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Serpentine + olivine aggregates deformation 
at 300-350°C, 3 to 4 GPa, ca. 2.10-5s-1 

 
varying weak phase content (5 to 50%) 

compare to pure phase 
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Serpentine+olivine aggregates deformation 
at 300-350°C, 3 to 4 GPa, ca. 2.10-5s-1 

Atg 20% + Ol 80% Ol 100 % 

Antigorite 
(basal) 

Olivine Olivine 

25% strain 12% strain 

0% strain 0% strain 
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Serpentine+olivine aggregates deformation 
at 300-350°C, 3 to 4 GPa, ca. 2.10-5s-1 
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LVP and x ray data for in situ 
deformation 
x-ray diffraction under stress: 
crystal preferred orientations ? 
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X-Ray diffraction : crystal preferred orientations 
in a polycrystal under high pressure 

 Olivine - example of slip system 

Plastic deformation 
Dislocation glide 
Grain rotations 
Non-random crystal orientations 

images S. Merkel 
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δ = 0° 

δ = 90° 

δ intensity variations 
à CPO, « texture » 

X-Ray diffraction : crystal preferred orientations 
in a polycrystal under high pressure 

2θ
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X-ray diffraction for microstructure 

Texture analysis 

MAUD software 
http://www.ing.unitn.it/~maud/  
L. Lutterotti 

inverse pole figure = probability to find a direction of 
interest, here the maximum compression direction,  

in the crystal coordinates system 
  

olivine at 5 GPa 1600K, strain 11% 
orthorhombic  
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Nishiyama et al, Geophys. Res. Lett., 2005 
Merkel et al, Model. Sim. Mater. Sc. Eng. 2012 

ε-Fe deformed to 11% at 17 GPa, 400K, ca. 10-5 s-1  

X-ray diffraction for microstructure 

0% strain 

11% strain 

0001 11-20 

10-10 

0% strain 

5% strain 

11% strain 

q  Quantify preferred orientations 
q  With modeling: -> deformation 

mechanisms 
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Energy Dispersive configuration (NSLS, APS ID6) 

! Not desirable for preferred orientations and in case of strong 
grain recrystallisation and growth  
 



Acoustic Emissions studies in 
the LVP / outlook for EBS 
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Green, 2007 

Those after ca. 50 km depth 
are not explained by friction 
theories. 
 
… are these earthquakes 
induced somehow by 
mineralogical reactions ? 
 
(and how do we test for this 
experimentally? ) 
 

Earthquakes at depths 
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Listening to rocks cracking under pressure: 

acoustic emissions: sudden release of elastic energy 
taken as proxy for ««brittle-like»» events in the samples 
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Gasc et al, 2011 

Deformation-DIA (HP-HT)  
X 

Synchrotron x-rays 
X 

acoustic emission (AE) recording 
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Green, 2007 
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Modified from Burnley and Green, 1991 

α - Mg2GeO4 

 (Mg,Fe)2SiO4 olivine requires too high pressures  
-> use an iso-structural system (« analog ») 
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based on microstructures 

“Weak ductile” “Brittle” “Strong ductile” 

Back in the 1990…  
Can we extend this to the mantle ?  
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Extending to higher pressures,  
adding AE monitoring and recording σ in real-time. 
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Olivine to spinel transition 
in Mg2GeO4 system 

Pre-sintered Ge-olivine, average grain size 30 microns, courtesy H.W. II Green 
Effective mean stress (pressure) = 4 GPa(0.25) 

Schubnel et al, 2013 
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Olivine to spinel transition 
in Mg2GeO4 system 

Pre-sintered Ge-olivine, average grain size 30 microns, courtesy H.W. II Green 
Effective mean stress (pressure) = 4 GPa(0.25) 

Schubnel et al, 2013 



55 

Olivine to spinel transition 
in Mg2GeO4 system 

Pre-sintered Ge-olivine, average grain size 30 microns, courtesy H.W. II Green 
Effective mean stress (pressure) = 4 GPa(0.25) 

Schubnel et al, 2013 
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Olivine to spinel transition 
in Mg2GeO4 system 

Pre-sintered Ge-olivine, average grain size 30 microns, courtesy H.W. II Green 
Effective mean stress (pressure) = 4 GPa(0.25) 

Schubnel et al, 2013 
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Sources characteristics 

Moment Tensor inversion for 42 largest AE events (unclipped):  
q  90 % Shear, i.e. less than 10% volumetric component 

Schubnel et al, 2013 
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AE statistics (continuous recording) 

Schubnel et al, 2013 

Upscaling ? 
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Mineralogical reactions in the downgoing slab 
and intermediate depth seismicity… 

q  Several rocks types 
investigated… 

 
q  Incel et al, 2017: AE are 

not specifically associated 
with a major fluid release 
(ie. lws breakdown).  

q  Ferrand et al, 2017: AE in 
dehydrating serpentinites 
occur for specific 
compositions and are due 
to a stress transfer at 
grain scales. 




