X-ray scattering at high pressures and low temperatures: Squeezing cool electrons

Jochen Geck

Institut für Festkörper- und Materialphysik

People and funding

T. Ritschel, M. Kusch, Q. Stahl, F. Heinsch

G. Garbarino, M. Hanfland, A. Bossak, M. Krisch, F.J. Matrinez-Casado

M. v. Zimmermann, S. Francoual, J. Sears

and many more....

Outline

- Why pressure and low temperatures?!!
- Typical experimental setups
- Scientific examples
 - Charge density waves and superconductivity
 - Pressure-driven covalency and magnetism
 - Strong covalency: Towards room temperature SC

Outline

- Why pressure and low temperatures?!!
- Typical experimental setups
- Scientific examples
 - Charge density waves and superconductivity
 - Pressure-driven covalency and magnetism
 - Strong covalency: Towards room temperature SC

The theory of "everything"

$$\hat{H} = -\frac{\hbar^2}{2} \sum_{i} \frac{\nabla_{\vec{R}_i}^2}{M_i} - \frac{\hbar^2}{2} \sum_{i} \frac{\nabla_{\vec{r}_i}^2}{m_e} - \frac{1}{4\pi\epsilon_0} \sum_{i,j} \frac{e^2 Z_i}{|\vec{R}_i - \vec{r}_j|} + \frac{1}{8\pi\epsilon_0} \sum_{i \neq j} \frac{e^2}{|\vec{r}_i - \vec{r}_j|} + \frac{1}{8\pi\epsilon_0} \sum_{i \neq j} \frac{e^2 Z_i Z_j}{|\vec{R}_i - \vec{R}_j|}$$

The fundamental rules can be easily written down, but the resulting behavior is very hard to predict (if not impossible)

Emergent properties

Unconventional Superconductivity, self-organization of electrons, spin liquids...

Coupled degrees of freedom

SPINS

Crystal field splitting Charge fluctuations Orbital occupation and exchange

ORBITALS

Local lattice distortions

Overlap integrals and charge transport

Magnetic coupling (GKA-rules)

LATTICE

Polaronic charge carriers Crystal field splitting and orbitals Magnetic coupling (bond distances angle)

CHARGES

Electron-phonon coupling Spin fluctuations Orbital occupation

Independent particles

Independent particles

A simple model

2 states per site

- t : kinetic energy
- Hopping only restricted by Pauli
- Otherwise **no** interactions

$$\mathcal{H} = -t \sum_{\langle ij \rangle, \sigma} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{h.c.})$$

Independent particles

A simple model

2 states per site

Quasiparticle band structure

$$\mathcal{H} = -t \sum_{\langle ij \rangle, \sigma} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{h.c.})$$

Band theory:

all states occupied: **insulator** otherwise: **metal**

Correlated electrons

Mott system for t<U

- *t* : kinetic energy
- *U*: Electron-electron interaction
- *U* creates additional correlations
- U competes with t

$$\mathcal{H} = -t \sum_{\langle ij \rangle, \sigma} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{h.c.}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Correlated electrons

Electronic order at half filling

$$\mathcal{H} = -t \sum_{\langle ij \rangle, \sigma} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{h.c.}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Half filling
Insulating state!
AFM ground state!

Complex electron systems

Various interacting degrees of freedom

- Breakdown of independent particle picture
- Rich physics: HTSC, CMR, multiferroic order, phase competition and coexistence...(technological potential)

More is different

More is different

Collective quantum phases in condensed matter:

- Superconductivity, electronic order, spin liquids ...
- Formidable theoretical challenge
 - **→ Experiments!**
- Studies of ground state
 - → low temperature!
- Controlled manipulation lattice without external symmetry breaking
 - → hydrostatic pressure!

ARTICLES

From Mott state to superconductivity in 1T-TaS₂

B. SIPOS^{1*}, A. F. KUSMARTSEVA^{1*}, A. AKRAP¹, H. BERGER¹, L. FORRÓ¹ AND E. TUTIŠ²

¹Ecole Polytechnique Fédérale de Lausanne, IPMC, CH-1015 Lausanne, Switzerland

Published online: 9 November 2008; doi:10.1038/nmat2318

- What happens at the atomic level?
- Structural changes?
- Electronic order in real space?

²Institute of Physics, Bijenička c. 46, Zagreb, Croatia *e-mail: bsipos@gmail.com: anna.kusmartseva@ed.ac.uk

July 2009

www.epljournal.org

EPL, **87** (2009) 17004 doi: 10.1209/0295-5075/87/17004

Pressure-induced superconductivity in BaFe₂As₂ single crystal

AWADHESH MANI^(a), NILOTPAL GHOSH, S. PAULRAJ, A. BHARATHI and C. S. SUNDAR

Materials Science Group, Indira Gandhi Centre for Atomic Research - Kalpakkam, 603102, Tamilnadu, India

- What happens at the atomic level?
- Structural changes?
- Electronic order in real space?

npj | Quantum Materials

www.nature.com/npjquantmats

emimetal

ARTICLE
PressureNbAs₂

X-ray scattering experiments can help!

Yupeng Li¹, Chao An², Chenqiang Hua¹, Xuliang Chen o², Yonghui Zhou², Ying Zhou², Ranran Zhang², Changyong Park³, Zhen Wang^{1,4}, Yunhao Lu⁴, Yi Zheng^{1,5}, Zhaorong Yang^{2,5} and Zhu-An Xu o^{1,4,5}

- What happens at the atomic level?
- Structural changes?
- Electronic order in real space?

Outline

- Why pressure and low temperatures?!!
- Typical experimental setups
- Scientific examples
 - Charge density waves and superconductivity
 - Pressure-driven covalency and magnetism
 - Strong covalency: Towards room temperature SC

Pressure cells

Clamp type cell (up to 1.5 GPa)

SiC anvil cell (up to 6 GPa)

diamond anvil cell (up to 200 GPa)

Membrane-driven DAC

Pressure monitoring

Pressure monitoring

Pressure transmitting media

S. Klotz, J. Phys. D: Appl. Phys. 42, 075413 (2009)

LHe-flow cryostat

Helium flow cryostat

- $T_{min}=3 K$
- Membrane-driven DAC P_{max}=200 GPa
- High resolution XRD on powder and single crystal samples
- Ruby fluorescence, Raman, transport, magnetic measurements

available on ID15b, ID12, ID18, ID28, ID24

ID27 of the ESRF

Low-temperature and high-pressure XRD

ID27 before EBS

- 20 keV 60 keV
- **φ**_{max} ≃ 1 · 10¹¹ ph/s at 33 keV in 0. 1%BW
- 0.100 mrad (H)
 0.005 mrad (V)
 with KB-mirrors
- $3x3 \mu m^2$ beam

ID27 new

- 25 keV 60 keV
- $\phi_{\text{max}} \approx 8.10^{13} \text{ ph/s}$ at 33 keV in 0.1%BW
- 0.0070 mrad (H)
 0.0045 mrad (V)
 with KB-mirrors
- 0.3 x 0.3 μ m² beam

Comparison

In-house experiment versus ID27

ID27 new

- 25 keV 60 keV
- **φ**_{max} ≃ 8 · 10¹³ ph/s at 33 keV in 0. 1%BW
- 0.007 mrad (H)
 0.005 mrad (V)
 with KB-mirrors
- 0.3 x 0.3 μ m² beam

ID27 before EBS

- 20 keV 60 keV
- $\phi_{\text{max}} \simeq 1.10^{11} \text{ ph/s}$ at 33 keV in 0.1%BW
- 0.100 mrad (H)
 0.005 mrad (V)
 with KB-mirrors
- $3x3 \mu m^2$ beam

Sealed tube

- 17.5 keV and 19.6 keV
- $\phi_{\text{max}} \approx 2 \cdot 10^7 \text{ ph/s}$ at 17.5 keV
- 1 mrad 3 mrad
 2D focusing optics
- $80x80 \, \mu \text{m}^2 \text{ beam}$

smaller samples higher pressures high resolution higher sensitivity

Outline

- Why pressure and low temperatures?!!
- Typical experimental setups
- Scientific examples
 - Charge density waves and superconductivity
 - Pressure-driven covalency and magnetism
 - Strong covalency: Towards room temperature SC

ARTICLES

From Mott state to superconductivity in 1T-TaS₂

B. SIPOS^{1*}, A. F. KUSMARTSEVA^{1*}, A. AKRAP¹, H. BERGER¹, L. FORRÓ¹ AND E. TUTIŠ²

¹Ecole Polytechnique Fédérale de Lausanne, IPMC, CH-1015 Lausanne, Switzerland

²Institute of Physics, Bijenička c. 46, Zagreb, Croatia *e-mail: bsipos@gmail.com: anna.kusmartseva@ed.ac.uk

Published online: 9 November 2008; doi:10.1038/nmat2318

- What happens at the atomic level?
- Structural changes?
- Electronic order in real space?

p-T phase diagram

CDWs in 1T-TaS₂

Nearly commensurate CDW:

- ordered CDW-defects
- stabilized by P at low T
- becomes SC at low T
 (Sipos et al., Nature Mat. 2008)

Experiment at ID09

q versus P

q versus P

Nearly commensurate CDW

T. Ritschel *et al.*, PRB **87** (2013)

Superconducting CDW

R≈R′ -

Expectations:

q constant

Defects widen — intensity ratios change

XRD experiment:

- q changes with P
- Constant intensity ratios
 - → Internal structure of defects unchanged
 - → Defect lattice compressed!
 Whole CDW-defect lattice is SC

 $R = \frac{3\sqrt{13} \cdot |\mathbf{q} - \mathbf{q}_{\mathrm{C}}|}{3\sqrt{13} \cdot |\mathbf{q} - \mathbf{q}_{\mathrm{C}}|}$

T. Ritschel *et al.*; PRB **87**, 125135 (2013)

What drives P-dependence?!

Quasi-molecular orbitals: orbital-lattice coupling

T. Ritschel *et al.*, Nature Phys. (2015)

Outline

- Why pressure and low temperatures?!!
- Typical experimental setups
- Scientific examples
 - Charge density waves and superconductivity
 - Pressure-driven covalency and magnetism
 - Strong covalency: Towards room temperature SC

α -RuCl₃: candidate for Kitaev spin liquid

Monoclinic lattice structure (ambient)

R.D. Johnson *et al.*, PRB **92** (2015)

α -RuCl₃: candidate for Kitaev spin liquid

Kitaev magnetism

H. Takagi *et al.*, Nature Rev. (2019)

- Exactly solvable model
- Quantum spin liquid

Realization in α -RuCl₃

R. Valenti *et al.*, Univ. Frankfurt

- But: AFM below 7 K!
- Hydrostatic P?!!
 (need to avoid
 symmetry breaking!!)

Pressure dependent magnetism

G. Bastien et al., PRB **97** (2018)

Pressure-driven structural transition

XRD: Structure refinement

Monoclinic C2/m

Triclinic P-1

G. Bastien *et al.*, PRB **97** (2018)

Pressure-induced dimerization

Quasi-molecular orbitals: orbital-lattice coupling

Other example: Li₂IrO₃

Pressure-induced dimerization: Wide spread in 4d-5d TMOs!

PHYSICAL REVIEW B 99, 125127 (2019)

PHYSICAL REVIEW B 97, 020104(R) (2018)

Rapid Communication

Pressure-induced collapse of the spin-orbital Mott state in the hyperhoneycomb iridate β -l

T. Takayama, ^{1,2} A. Krajewska, ^{1,2} A. S. Gibbs, ³ A. N. Yaresko, ¹ H. Ishii, ⁴ H. Yamaoka, ⁵ K. Ishii, ⁶ N. Hiraoka, ⁴ N. P. Funnell, ³ C. L. Bull, ³ and H. Takagi ^{1,2,7}

Competition between spin-orbit coupling, magnetism, and dimerization in the honeycomb iridates: α-Li₂IrO₃ under pressure

V. Hermann, M. Altmeyer, J. Ebad-Allah, 1,3 F. Freund, A. Jesche, A. A. Tsirlin, M. Hanfland, P. Gegenwart, I. I. Mazin, D. I. Khomskii, R. Valentí, and C. A. Kuntscher,

γ -Li₂IrO₃

Resonant **magnetic** x-ray scattering at the Ir L₃-edge

Outline

- Why pressure and low temperatures?!!
- Typical experimental setups
- Scientific examples
 - Charge density waves and superconductivity
 - Pressure-driven covalency and magnetism
 - Strong covalency: Towards room temperature SC

Cartoon! (We start from molecular orbitals)

- Lattice of weakly interacting H₂-molecules
- Electrons localized in covalent bonds
- Insulator

Cartoon!

Pressure: weak bonds become stronger

Cartoon!

- Pressure: weak bonds become stronger
- Various bond configurations possible
- Delocalization!

Cartoon!

- Pressure: weak bonds become stronger
- Various bond configurations possible
- Delocalization!

Hydrogen is predicted to be a conventional HTSC!

Conventional SC close to RT?!

PHYSICAL REVIEW LETTERS 122, 027001 (2019)

Editors' Suggestion

Featured in Physics

Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures

Maddury Somayazulu,^{1,*} Muhtar Ahart,¹ Ajay K. Mishra,^{2,‡} Zachary M. Geballe,² Maria Baldini,^{2,§} Yue Meng,³ Viktor V. Struzhkin,² and Russell J. Hemley^{1,†}

Conclusion

Interacting electron systems: fascinating, often puzzling

phenomena

Experiments needed!

→ Low T: Ground state properties

→ High P: tune lattice without

external symmetry

breaking

Tweak balance between different interactions

Enables to explore uncharted regions of the phase diagrams!

Thank you very much!!

Orbitals

Charges

Spins

Lattice