

IMPMC, Sorbonne Université , CNRS, MNHN, IRD, 4 Place Jussieu,F-75252, Paris, France.

Summary

- Overview of DAC techniques based on resistive heating
- P-T metrology in the RH-DAC
- Going beyond the temperature limit of the RH-DAC: induction heating
- Examples of applications and perspectives with EBS

Pioneer experiments: (1) External resistive heater

Invention of the DAC: late 1950's. First high temperature (RH) experiments: late ~60's

Fig. 1.36 The NIST diamond anvil cell with temperature capability [47]. This cut-away cross section shows the essential components of the NIST DAC including the anvil support alignment design, lever-arm assembly and spring washer loading system. For high-temperature experiments the entire cell, except for the spring washers, is fabricated from Inconel 718, a high-temperature high-strength superalloy which permits sample temperatures as high as 1,073 K to be maintained routinely [58]

S.M. Peiris, G.J. Piermarini (eds.), Static Compression of Energetic Materials,
Shock Wave and High Pressure Phenomena,
Springer-Verlag Berlin Heidelberg 2008

G. J. Piermarini, J. Res. Nat. Inst. Stand. Technol. 106, 889-920 (2001); http://nvl.nist.gov/pub/nistpubs/jres/106/6/j66pie.pdf

Fig. 1.22 A single crystal of benzene II in equilibrium with liquid at about 310°C and 3 GPa, showing well-defined crystal morphology. This crystal was slowly grown to fill the gasket cavity by gradually reducing the temperature to RT. A crystal such as this one was used to study the structure of benzene II [36]

Piermarini et al, Science 1969

Pioneer experiments: (2) internal (direct) heating

Alumina (pressure medium)

Metallic gasket (SS)

Insulating layer (alumina)

Metallic gasket (SS)

- The metallic sample is directly heated by the electric current
- Sample is a thin wire
 (∅ 0.02 mm, 0.2 mm long)
- Phase transitions are detected by changes in sample resistance

Liu & Basset, J. Geophys. Res. 1975 R. Boehler, Geophys. Res. Lett. 1986

Internal heating: Refinements

Metallic gasket

Mica

Foil + electrical leads

Mica

Metallic gasket

Dubrovinsky et al, PCM 1998

- Direct heating of a thin metallic foil (or flatened wire)
- The sample is placed in a hole (Ø25-100 μm) drilled in the foil
- T up to 2000 K
- Complex assemblage, non reusable
- Several thermal cycle needed to relax deviatoric stresses

Zha & Basset, RSI 2003

L.C. Ming et al, High P Res. Min. Phys. 1987

- Most designs include:
 - An external heaterT<~700 K
 - An internal heaterT<~1000-1200 K
- The body of the cell must be constructed out of high temperature materials:
 - Refractory metals (Mo, Re, Inconel 718, Udimet 700...)
 - Ceramics (Alumina, Zirconia,...)

Schiferl et al, High P Res. Min. Phys. 1987

- Most designs include:
 - An external heaterT<~700 K
 - An internal heaterT<~1000-1200 K
- The body of the cell must be constructed out of high temperature materials:
 - Refractory metals (Mo, Re, Inconel 718, Udimet 700...)
 - Ceramics (Alumina, Zirconia,...)

Various designs of resistive heating Rondelle mica Thermocouple Joint rhénium - W-Re alloy $- e = 0.1 \, \text{mm}$ $-\varnothing$ = 12.7mm. Résistance Ciment céramique Résistance_ $-R = 0.7 \Omega$ (13.25 V, 5.2 Å)-**Ceramic body** 1600 1400 Push piece Cover+ 3 1200 membrane Température 1000 800 600 Heater+ gasket 400 **Diamond**

Metallic body

backing plates

Le Toullec et al, High P Sci. Technol. 1996

50

Puissance (W)

60

70

External heater

Internal heater

- **External heater:**
 - Ring-shaped, enclosing the full DAC
 - − T<750 K</p>
- Internal heater
 - Single unit made of a double coil of Re-W wire
 - $T < \sim 1000 K$
 - Thermal contact through a thin graphite ring
- Small footprint
- Easy to set-up
- Reusable

F. Datchi & B. Canny, 2002

- 3 heaters around the body and at the back and front of the DAC
- Tmax~1200 K
- Enables isobaric heating (according to authors)

- Radiative heating via a resistively heated tungsten coil of halogen lamp
- Tmax~1200 K

Pasternak et al, RSI 2008

Graphite internal heater

Dubrovinsky et al, 1999

ESRF DAC (Garbarino/Jacobs)

- Internal heater made of ring-shaped graphite
- Graphite is a good electric and thermal conductor and is easly machined
- T up to ~1300 K
- Requires large current (>100 A)
- Complex assemblage and non reusable
- Large variation of P during heating

Gaskets in the RH-DAC

- Re gaskets perform well up to T~1150-1200K [1,2]
- For T>~1200 K, composite gaskets have been developped, consisting of amorphous B, BN or C mixed with epoxy

Pros:

- Higher mechanical strength at high T
- Higher thickness at high P
- Quasi-transparent for hard x-rays

Cons:

- Longer preparation
- May react with sample. Other fillers than epoxy has been proposed (MgO)
- Insert is porous and may mix with sample=>not suited for fluid/gas loading

a-B + epoxy gasket [Rosa et al, 2016]

Stability of diamond at high T

Diamond is a metastable form of carbon at room pressure, so what is the temperature limit for using diamond anvils?

- Oxygen chemically attack diamond surfaces.
 Oxydation is enhanced by T
 - ➤ Need to work in a reducing atmosphere (Ar/H2(1%)) or vaccum (10⁻⁵ mbar)

Fig. 3. Sample mass versus temperature of diamond specimens with polished [100] faces at heating rates of 0.18, 0.45, 0.89, 1.81, and 3.64 K min⁻¹.

[110] face after 10% weight loss under O₂ flow

Dallek et al , Thermochimica acta 1991

Stability of diamond anvils at high T

- Graphitization of anvil surfaces start at ~1600°C in vaccum (<6x 10⁻⁵ mbar) and progress rapidly above
- Threshold T and rate depend on crystal faces. The more resistant is (100).
- ➤ Heating to ~1600 °C is safe under vaccum of a few 10⁻⁵ mbar
- Higher T's may be achieved for a short time.

Figure 1. Successive stages of graphitization of diamond. Polished plate (110) from a natural crystal. Annealing at temperatures: (a) 1640 $^{\circ}$ C, (b) 1650 $^{\circ}$ C, (c) 1660 $^{\circ}$ C, and (d) 1680 $^{\circ}$ C. No removal of graphite material by chemical etching in intervals between annealing stages was done. Graphitization figures are shaped as butterflies. The micrographs were taken in transmitted light. Frame size, 2.67×2 mm.

P-T metrology in the RH-DAC

Measuring P-T with x-rays

- Various calibrants may be used with an x-ray source: Au, Pt, MgO, NaCl,...
- Crossing EOS of two calibrants allow simultaneous measurements of P and T [Crichton & Mezouar, 2012]

But... you are not always at a synchrotron!

Diffraction pattern of the couple h-BN-Pt

Measuring pressure at high T in the lab

How to precisely measure the sample pressure at high T in the DAC (in the lab)?

- Pressure measurement with the standard ruby sensor gets less and less accurate with T
 - Broadening of the R lines, complex background
 - Sensitivity of R lines to errors in T
- Selected alternatives:
 - Fluorescence sensor : SrB₄O₇:Sm²⁺
 - Raman sensor : c-BN

SrB₄O₇:Sm²⁺: The best fluorescence sensor?

Pros:

- Strong, isolated line (${}^5D_0 {}^7F_0$) at 685.41 nm at ambient.
- − Small bandwidth: $\delta\lambda_{FWHM} \approx 0.1$ nm at ambient conditions
- lower $(d\lambda/dP)_{P=0}$: 0.253(5) nm/GPa vs. 0.365 nm/GPa for ruby *but improving* with P
- P calibration weekly dependent on PTM
- Very small wavelength shift with temperature ($d\lambda/dT$)
- Small broadening with temperature $d(\delta \lambda_{FWHM})/dT$
- Easy to synthesize

Cons:

- Prone to chemical attack (dissolved by water and acids at HP-HT, but so is ruby)
- Rapid decrease of intensity with T: limits to ~1000 K

Lacam and Château, J. Appl. Phys. 66,366 (1989)

SrB₄O₇:Sm²⁺: High temperature measurements

0-0 line at 1 atm and high T

- Wavelength shift 2 orders of magnitude smaller than ruby at 900 K
- No overlap with other bands
- Rapid decrease of intensity above 500 K, but measurable to ~900 K

Fluorescence spectra at high P-T

F. Datchi, R. LeToullec and P. Loubeyre, J. Appl. Phys. 81, 3333 (1997); F. Datchi et al, High Pres. Res. 27, 447 (2007)

SrB₄O₇:Sm²⁺:Pressure calibration in He

 $\Rightarrow \partial \lambda_{0-0}/\partial P > \partial \lambda_{R_1}/\partial P \text{ for } P > \sim 40 \text{ GPa}$

c-BN - Advantages as a pressure sensor

- Intense Raman TO mode (1054 cm⁻¹ at ambient), well separated from the anvil signal (1332.5 cm⁻¹)
- Small linewidth (~3.5 cm⁻¹ at ambient) which increases slowly with T
- Chemically inert: suitable for corrosive media
- Structurally stable in a wide P-T domain
- Easily available in sizes suitable for DAC
- Measurable at T>1000 K (provided you have a good Raman setup)

HP-HT Raman and EOS data of c-BN

- TO mode
- Ne PTM
- 373 K < T < 723 K0 < P < 21 GPa

- Single-crystal sample
- Ne (HT) or He (295 K) PTM
- P<160 GPa at 295 KP<80 GPa, 500<T<900 K

F. Datchi et al, PRB, 75, 214104 (2007).

Mie-Grüneisen EOS for c-BN

Pressure is expressed as the sum of a cold (T=0 K) part and a thermal part due to vibrational energy:

$$\begin{split} P(V) &= P_{0K}(V) + P_{th}(V) \\ P_{OK}(V) &= 3B_0[(1-x)/x^2] \exp[1.5(B_0'-1)(1-x)] \,, \\ x &= (V/V_0)^{1/3} \\ P_{th}(V) &= 3RT\left(\frac{\gamma_{th}}{V}\right)\mathcal{D}(\Theta_D/T) \end{split}$$

Where γ_{th} is the Grüneisen parameter and $\mathcal{D}(\Theta_D/T)$ is the Debye function.

 γ_{th} is allowed to vary with volume according to:

$$\gamma_{th} = \gamma_{th0} (V/V_0)^q$$

The constrained Raman pressure scale

• Using the first-order Murnaghan EOS, the variation of $v_{TO}(P,T)$ may be expressed as:

$$\nu_{TO}(P,T) = \nu_{TO}(0,T)[1 + [B_0'/B_0(T)]P]^{\gamma_{TO}/B_0'}$$

- $B_0(T)$ and B'_0 are given by the Mie-Gruneisen EOS
- $v_{TO}(0,T)$ is given by Herchen and Capelli, PRB,47,14193
- γ_{TO} is taken T-independent (1.257).
- We obtain the following pressure scale:

$$P = [B_0(T)/3.62]\{[\nu_{TO}(P,T)/\nu_{TO}(0,T)]^{2.876} - 1\}$$

with:
$$\upsilon_{TO}(0,T) = 1058.4(6) - 9.1(20)x10^{-3} T-1.54(22)x10^{-5} T^2$$

 $B_0(T>300 K)=396.5-0.0288(14)(T-300)-6.8(8)E-6(T-300)^2$

F. Datchi et al, PRB, 75, 214104 (2007); High Pres. Res. 27, 447 (2007).

Accuracy and useful range

P (GPa)

Comparison with Ono et al, 2015

- Raman in DAC with resistive heating
- NaCl PTM
- P<87 GPa, T<800 K
- P measured with Au EOS from Doogokupets & Dewaele, HPR 2007
- Polynomial fit of $v_{TO}(P,T)$

S. Ono et al, J. Phys. Chem. Sol. 76,120 (2015).

Comparison between Datchi et al c-BN scale and Ono et al's data

Conclusions/recommendations

- For T<900 K, SrB₄O₇:Sm²⁺ is probably the best choice, except for corrosive media.
- For higher T, or corrosive media, c-BN and/or diamond may be used in the P ranges:
 - c-BN: P < ~100 GPa</p>
 - ¹²C: P>15 GPa
 - ¹³C: P<14 GPa
- It's always better to cross-check using several sensors!

Temperature measurement

- Thermocouples give an easy, rapid and accurate (within a few K) temperature measurement in the RH-DAC
- Extreme care must be taken where the thermocouple is attached!
 The closer to the sample the better (especially when using internal heater)
- K- (or N-) type range is usually enough but R and S types can be used for higher T
 - K/N: T<1300 K in continuous use</p>
 - R/S: T<1850 K in continuous use</p>
- Optical pyrometry (as in laser heating) is also used for T> 1500 K in direct internal heating – more difficult and less accurate

Temperature gradient for the « heating gasket »

Temperature gradient measured in a HP experiment using the heating gasket. The thermocouple is cemented to a hole drilled 1 mm away. The sample temperature is meausred using the Ruby-SrBO:Sm metrology.

Ruby- SrB₄O₇:Sm²⁺ crossed P-T metrology

The simultaneous measurement of ruby R_1 line and of SrB_4O_7 : $Sm^{2+} {}^5D_0 {}^{-7}F_0$ line enables an *in-situ* determination of pressure and temperature

Ruby:

$$\Delta \lambda_{R_1}(P,T) = \Delta \lambda_{R_1}(P,T_0) + \Delta \lambda_{R_1}(P_0,T)$$

• $SrB_4O_7:Sm^{2+}$:

$$\Delta \lambda_{0-0}(P,T) \cong \Delta \lambda_{0-0}(P)$$

Thus:

$$\Delta \lambda_{0-0}(P) \Longrightarrow P$$

$$P \Longrightarrow \Delta \lambda_{R_1}(P) \Longrightarrow \Delta \lambda_{R_1}(T) \Longrightarrow T$$

- > The two calibrants must be placed close to each other to minimze effect of P gradients
- > Accuracy of about \pm 3 K below 600 K, decreasing at higher T

Cross P-T dependence of ruby R₁ line

Do the T shift of ruby R₁ line depend on pressure ?

- Goncharov et al (2005):
 - Linear decrease of $\partial \lambda_{R_1}/\partial T$ with coefficient 3.5(4)x10⁻⁵ nm/K/GPa \Rightarrow 50% decrease at 100 GPa
- Rekhi et al (1999): $\partial \lambda_{R_1} / \partial T = 0.073(8) 8(8) \times 10^{-5} P$
- Our data: no significant change of $\partial \lambda_{R_1}/\partial T$ from 0 to 20 GPa (300<T<600 K).

Linear T coefficient of the ruby R₁ line below 600 K, in neon PTM. P measured by SrBO:Sm.

Going beyond resistive heating

Goal: find a way to heat at T>1000 K which is easy to set-up and operate

Going beyond RH-DAC: Induction heating

- Induction heating is based on the supply of energy by means of electromagnetic induction
- A coil is placed close to the metal parts to be heated. An alternated current in the coil induces electric (eddy) currents at the surface of the metal piece.
- Heating of the metal part is produced by Joule effect of the eddy currents and thermal transport of the heat to the bulk

Industrial applications of induction heating

Main applications:

- Brazing/soldering
- Heat treatment (hardening, annealing, tempering,...)
- Melting
- Forging

Induction heating: pros and cons for DAC use

Pros:

- Fast heating (seconds)
- Localized heating
- Controllable and reproducible

Cons:

- The induction zone must be free of metallic parts apart from heater
- Thermocouples cannot be used for temperature measurement
- DAC assembling and loading is complicated by the presence of the induction coil

Induction heating DAC by Shinoda & Noguchi (2008)

- Single turn coil made of water-cooled copper tubing
- The coil is fitted in-between the two DAC plates
- The coil heats the gasket and WC rockers. Heating the gasket alone was found unsufficient.
- Heating in air→ limit at 1000 K
- No other publication using this DAC

Shinoda & Noguchi, Rev. Sci. Instr. 79 (2008)

Examples of applications and perspectives

Examples of experimental setups

- RH-DAC setups are easily integrated in HP experimental measurement benches
- When using objectives (or any sensitive element), the only requirement is that working distance is long enough or the objective is well shielded from the high T zone
- Many laboratories have their own RH-DAC setups ready to be used.

A RH-DAC installed at the ID27 EH-1 station of ESRF for X-ray diffraction experiment

Examples of experimental setups

- RH-DAC setups are easily integrated in HP experimental measurement benches
- When using objectives (or any sensitive element), the only requirement is that working distance is long enough or the objective is well shielded from the high T zone
- Many laboratories have their own RH-DAC setups ready to be used.

A RH-DAC installed at the SMIS station of SOLEIL For IR spectroscopy

Examples of experimental setups

- RH-DAC setups are easily integrated in HP experimental measurement benches
- When using objectives (or any sensitive element), the only requirement is that working distance is long enough or the objective is well shielded from the high T zone
- Many laboratories have their own RH-DAC setups ready to be used.

Brillouin and Raman spectroscopic bench at IMPMC compatible with LH-DAC, IH-DAC and RH-DAC

Solid CO₂: the « intermediate bonding states »

Experimental phase diagram of CO₂ [After Yoo et al, 2006]

PHASE I (dry ice)

d(C-O)=1.168 Å at 1 GPa

PHASE IV

- d(C-O) = 1.487 Å
 at 15 GPa
- Bent molecules (160°)
- "Intermediate bonding state"

Is phase IV an intermediate state?

Phase IV (Pbcn)

Yoo, et al, PRL. **86** (2001). Park *et al.*, PRB **68** (2003)

- This structure is by far unstable in theoretical (DFT) calculations [Bonev et al, PRL 2003]
- What is the true structure of phase IV ?
- Synthezing a good powder sample in the DAC is very hard. A better solution is to grow a single crystal.

Growing a single crystal of phase IV

Growing a single crystal of phase IV requires:

- A very stable temperature above 800 K
- A fine control of pressure to decompress the solid down to the melting point and reach the solid/liquid equilibrium

Structure of phase IV

Structure of phase IV

Molecules are *linear* (no bending)

 The bond shortens with pressure, in contradiction with the intermediate state scenario

Future research on CO₂ at EBS

The structures of solid CO₂ are well established to ~1 Mbar: above 40 GPa, CO₂ is 4-fold coordinated (phase V)

DFT predicts new 4-coordinated structures at ~250 GPa and 6-fold coordination at ~1 TPa. Could be reached by new anvil designs and evidenced by XRD at EBS.

Lamellar phases P>250 GPa

ds-DAC Dubrovinskaia et al, 2016

Toroidal anvils Dewaele et al, 2018

6-coordinated CO₂, P~1 TPa

Lee et al, Phys. Rev. B 79 (2009) Lu et al, JACS 135 (2013)

Superionic ices

Superionic and Metallic States of Water and Ammonia at Giant Planet Conditions

C. Cavazzoni, G. L. Chiarotti,* S. Scandolo, E. Tosatti, Science, 1999 M. Bernasconi, M. Parrinello

- ❖ T<1200 K: protons are strongly bonded to O/N atoms</p>

Superionic ices

Superionic and Metallic States of Water and Ammonia at Giant Planet Conditions

C. Cavazzoni, G. L. Chiarotti,* S. Scandolo, E. Tosatti,
Science, 1999 M. Bernasconi, M. Parrinello

Source of non-axisymmetric magnetic fields of Neptune and Uranus ?

Order-disorder transition in solid NH₃

Order-disorder transition line: Raman

NH₃ stretching modes

The transition line follows a smooth power law up to 57 GPa and 700 K...

Order-disorder transition line: Raman

- NH₃ stretching modes
- > P>57 GPa: New regime dT/dP decreases suddenly
- > The HT phase is proton disordered

Order-disorder transition line: XRD

- > First order transition (volume discontinuity)
- > Orthorhombic lattice of N is maintained through the transition

Phase diagram of NH₃ and proton disorder

The number of accessible sites for the H atoms is much greater in the α phase than the plastic phase

Ab initio MD - Annealing at 40 GPa

Ab initio MD - Annealing at 70 GPa

- H+ can "jump" from one molecule to the other via H-bonds
- diffusion of H+ through the nitrogen lattice sets in
- Large increase of entropy consistent with experiment

Perspective studies with EBS

 NH_4^+

NH²⁻

Superionic ammonia

- Obtain a structural fingerprint of proton diffusion
- ➤ Discover new "exotic" phases

Ionic ammonia [S. Ninet, F. Datchi et al, PRB 89 (2014)] P>150 GPa 300 K

Symmetric and ionic NH₃ P>330 Gpa [Pickard & Needs, 2008]

Stucture of light (low-Z) fluids at extreme conditions in the DAC

How to quantitatively measure the structure of low-Z fluids in the DAC?

- Long-term project ESRF + ANR project MOFLEX
- New instrumental developments (Soller slits, vertical laser heating)
- ❖ First HP measurements of S(Q) on H₂ and CO₂
- **♦** Melting line and S(Q) of N₂ to Mbar pressures
- ♦ Melting line of NH₃ & H₂O
- Liquid-liquid transition in sulfur

G. Weck et al, PRB (rapid) 91 (2015)

N₂: is there a liquid-liquid transition?

Laser heating experiments to 120 GPa

❖ DFT predicts a L-L transition at ~90 GPa, 2000 K.

❖ No maximum on the melting line, nor evidence of L-L transition

on S(Q)

G Weck, et al, PRL 2017 ESRF highlight 2018

Perspectives with EBS

Flux increase:

- Better signal/noise, increased Q range
 - → Better resolution
- Shorter acquisition time
 - → time-resolved studies

Smaller beam:

- Smaller sample, increased P-T range
- Spatially resolved studies
- Larger coherence
 - Opens access to x-ray imaging