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The «basics»
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First scientific articles based on LH-DAC (WoS):

In canberra, Australia: Lin-Gun JIU (1974) discovery of the (Mg,Fe)SiO3 brigmanite,
the major mineral on Earth. He then wrote ~10 other major articles based on LH-DAC.

In Washington-DC: By: T. YAGI, H.K. MAO, P.M. BELL (1978) Bridgmanite

Photo: Pierru et al.

In Hawai (?), USA: L.C. MING and M.H. MANGHNANA (1979) Phase transition in MgF2
In Paris: A. LACAM, M. MADON, J.P. POIRIER (1980) Upper-Lower mantle discontinuity on Earth

First article using X-ray diffraction coupled with LH-DAC (WoS):
In canberra, Australia: Lin-Gun JIU (1974) discovery of the (Mg,Fe)SiO3 brigmanite.

First articles using synchrotron radiation coupled with LH-DAC (WoS):
In Washington-DC: Y. KUDOH, C.T. PREWITT, L.W. FINGER (1990). Bridgmanite EoS

In Mainz, Germany: R. BOEHLER, N. VONBARGEN, A. CHOPELAS (1990). Melting of Fe

First article using ESRF and LH-DAC (WoS):
S.K. Saxena, L.S. Dubrovinsky, P. Lazor et al. (1996) Breakdown of perovskite (MgSiO3) in the Earth's mantle
G. Fiquet, D. Andrault, A. Dewaele et al. (1998) P-V-T equation of state of MgSiO3 perovskite



At the first glance, one could think that LH-DAC techniques did not evolved much in recent years
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Infrared laser

Calibrant => Pressure
Radiation => Temperature

In fact, there is a continual, and critical, evolution in the control of experimental conditions
for a large part thanks to the use of synchrotron radiation



What is the limitation in pressure generation when using laser heating ?

1 bar

Culet of e.g. 250 ym

Ideal laser heating
up to ~60 GPa

1 bar

Bevel of e.g. 100/300 pm

High P

Laser heating is still fine!
Max 200-300 GPa

No laser heating is possible without some
space (microns) between the hot sample
and the cold diamonds

UT

'IrIIIII'|IIIIIIlII|IIII|I|II||JI|||||1'

J

T
B
5000
4000
3000

2000

Transmission (counts)

3 / Bevel

10/300 pm

1000

I'!illllllltll||lllEIEI||I|I1!

\

1

IIII|IIII|1I1III[IIIIIIFIIIIIEIIIIIIII
0

Nphuraigls N
VAT sk

-200 -100 0 100 200
Distance (um)

The maximum pressure is ~300 GPa today
for temperatures of several 1000 K



What is the temperature limitation in the LH-DAC ?

| do not known a limitation today
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Use of reflective objectives...

Spectrometer
entrance
pinhole

Hot
sample >

As we need the light intensity as a fonction of A
any chromatic abheration disables
the temperature measurement
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How to be sure that the sample properties are measured in the laser hot spot ?

Visualisation and alignement of the X-ray beam

The use of pico or piezo motors
is very convenient for the
final optical alignements

Warning: The good optical alignement
must be checked carrefully

Spectrometer at high laser power !

entrance

Alignement of the laser spot

Misaligned : 1500 K Aligned : 1500 K 2500 K




Can we resolve the radial temperature gradient using a very small sample ?
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No, in most cases, it makes the radial gradient even worse !



How critical
is the radial Radial
temperature temperature
: radient . .
gradient ? 9 Pressure medium thermal conductivity
FWHM Two end-members situations arise
20-30 pum High k Low k

Cold diamonds

__________ m— axial
———————— — -+ - ——=J temperature
gradients
FWHM << sample  ~ Constant
thickness temperature

Diamond: ~500K <
Glass < T000K

Take away message:

Melt > 4000K .. .
et Minimizing the axial
temperature gradient
_ is often the major
Melting of the

difficulty

Earth’s mantle
Fiquet et al.,, 2010




Do I need double sided laser heating for my sample ?
(I promised to good LH-DAC colleagues a «transparent-like» figure in this talk)

Laser absorption at the sample surface: Need 2 sides heating
- Metal heated by fiber laser (1um)
- Oxide heated by CO2-laser

Laser absorption in the bulk of the sample (at A=Tum):
- Oxide mixed with Pt-absorber power
- (Mg,Fe)-minerals

Thermal conduct|V|ty of pressure medium
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What is the sample pressure in the laser spot ?

We were successful to
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Pressure is significantly improved in the laser spot. It can be 2.5 GPa/1000K

=> It is not possible to measure a PVT EoS without an internal pressure calibrant (e.g. Pt for MgSiO3)



Any potential problem with chemical migration in the laser spot ?
Yes, major problems!

Chemical analyses of olivine
(Mg,Fe)2S104 recovered after laser
scan of the laser over the entire
sample surface

For this reason, the LH-DAC
cannot provide constrains on

the Equation of state of
(Mg,Fe)-minerals; the interdiffusion
IS t00 easy.

We need fast
measurements
=> ESRF-EBS



Any potential problem of chemical pollution of the sample ?

Reported solidus for various mantle compositions
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Infrared absorption of the recovered sample
=> 1510 ppm water

0.06

004 ¢

-0.02

3000 3500 4000

Wave number (cm-1)

=> For high-T studies, always load
your DAC in a glove bag under Ar/N2 flux



Any potential problem with chemical polution of the sample

Yes, major problems!
Carbon diffusion

Anzellini et al., 2013
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How critical is the size of the X-ray probe ?

Probe size >> hot spot
Then, the data set can be deconvoluted:
Mossbauer spectrum registered at ID18
Deconvolution of a mixture of
The laser can be scanned Fe2+ (LS & HS) in ferropericlase
several minutes on the sample Fe2+ (LS and IS) and Fe3+ (LS) in bridgmanite
for partial homogeneization
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=> Good configuration: Small radial temperature gradient on sample ESRE-EBS

Probe size << hot spot



How critical is the size of the X-ray probe ?

Probe size << hot spot + short acquisition time Melting of pyrolite at P=78 GPa

=> This allows the mapping of the sample properties .
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Is any type of measurement available in the LH-DAC at ESRF ?

To date, these types of measurements were performed:

- X-ray diffraction

- X-ray absorption (XANES)

- Inelastic scattering (phonons)
- Mossbauer spectroscopy

- X-ray emission spectroscopy
- X-ray raman (?)

- and maybe others ?

For some techniques, some limitations remain in:
- Acquisition time

- Size of the beam

- Absorption of diamond window

With the EBS-ESRF, many beamlines will offer a much smaller beam, which
will make the LH-DAC system even more suited



CO, or YAG laser

Re gasket E :‘

Thanks for your attention!

Any comments on my «questions» ?
Any additional question that «we» would comment ?





