

The New ID29: Planning and User access

Daniele de Sanctis - daniele.de_sanctis@esrf.fr Shibom Basu - shbasu@embl.fr

ID29 WITH EBS

- photon source brilliance (x100)
- coherent fraction of the photon beam (x50)

SOURCE - FLUX

Parameter	ESRF low Beta (ID29)	ESRF EBS
Electron beam energy [GeV]	6.04	6
Nominal current [mA]	200	200
Relative rms energy spread of electron beam []	0.001	0.00095
Horizontal emittance [nm]	4	0.132
Vertical emittance [pm]	5	5
Horizontal beta [m]	0.35	6.9
Vertical beta [m]	2.95	2.65
Horizontal Dispersion [m]	0.0308	0.00175
Horizontal rms electron beam size [μm]	48.5	30.2
Horizontal rms electron beam divergence [μrad]	106.9	4.37
Vertical rms electron beam size [μm]	3.84	3.6
Vertical rms electron beam divergence [µrad]	1.3	1.38

- Initial operation began with already available source
- Future configuration will have a permanently cryocooled undulator that will provide additional increase in flux and expand the energy range

Flux at 30 m 1x1 mm slits

Energy (ev)

SERIAL FEMTOSECOND CRYSTALLOGRAPHY

The advent of SFX opened new perspectives in macromolecular crystallography:

- Diffraction before destruction
- Outrun radiation damage at RT
- Possible to study nano-to-micro crystals
- Reveal structure without cryo-protectant artifacts
- Diffraction is from "still" crystals (no rocking)
- New methods and software to index and integrate data
- Diffraction patterns from thousands of crystals
- A new way to perform time resolved experiments

ROOM TEMPERATURE DATA COLLECTION

- Cryo-structures do not display the same range of conformations as the RT structures.
- They might hide functional conformations and prevent binding of substrates or inhibitors
- RT temperature crystal structures reveal physiologically relevant conformations "hidden" at 100 K
- Present thermal motion closer to "native" conditions
- Better interpretation of crystal structures, including for the design of new therapeutic agents
- Because of radiation damage, serial crystallography is the most valuable route to obtaining RT structures.

ROOM TEMPERATURE MICROCRYSTALS

Hydrated microcrystals at room temperature can:

- be activated
- be soaked

Schmidt, M. 2013

Focusing Region:
Control of The Late Control o

Olmos et al 2018

Dasgupta, et al. 2019.

Knoška et al 2020

TIME RESOLVED STUDIES

Tenboer et al. 2014.

New pathways for time resolved studies

LCP injector

- At 3rd generation synchrotron were mainly limited to Laue experiments
- Serial crystallography permits to overcome damage issue and collect multiple time points using a pulsed source

Kupitz et al 2014

SAMPLE DELIVERY AT SYNCHROTRONS

Detector

Frames

0-5 ms 5-10 ms 10-15 ms 15-20 ms

Monteiro et al 2020

X-ray Beam

195-200 ms 0-5 ms

Laser on

Injector

Delay Generator

Botha et al, 2015

Roessler, et al 2013

Helix G Helix F ~ 9 Å Helix E

Laser off

- Most of "slow" sample delivery systems could be adapted to perform experiments at 3rd generation synchrotrons
- New ones such as microfluidic and tapes could be developed
- Serial time resolved experiment similar to FEL are possible, in the millisecond time range
- New possibilities for structure obtained with ligand mixing

Weinert et al 2019

FIXED TARGETS

- Alternative to injectors are represented by fixed targets, where microcrystals are sitting in a regular arrays
- They can be used for light triggered time resolved experiments
- They present low background and less sample consumption
- Collect multiple time points with the Hit&Return method
- Or in combination with nano-pipetting systems, to add ligands, substrates, ...

Schultz et al 2018

Mehrabi et al 2019

- Optimising the acquisition time in the micro-to-millisecond time range allows to study a waste majority of enzymatic processes
- The development and the use of photoactivatable cage compounds expands the processes that can be studied and define accurately t=0
- 3rd generation synchrotrons are mostly limited to milliseconds due to detector and available flux at the sample position
- 4th generation allow for a x10 flux and x10⁵-10⁶ flux density
- ID29 optical layout was designed to tackle this time resolution

Photobiology

Study light activatable biological processes

Investigate light dependent biochemical reaction

ID29

Serial and time resolved crystallography

Enzymology

Study enzymatic reaction in crystals

Enzyme design and repurposing by synthetic biology

Drug design

Exploit room temperature fragment screening

Identify time dependant structure:ligand complexes

THE WISHLIST

- Room temperature Serial crystallography experiment
- Extremely high flux with exposure time in µs range and high repetition rate
- Tunable over a large energy range
- Accurate control timing system to trigger events
- Adapt different sample environments and crystal delivery systems
- Low sample consumption
- A dedicated sample preparation laboratory and data analysis area

OPTIC HUTCHES

- A multilayer monochromator system was designed to increase bandwidth (more flux and ticker Ewald sphere
- Adjust bandwidth by changing stripe
- The multilayer monochromator permits to deliver higher flux in larger bandwidth
- Three stripes are present to cover whole energy range 10-20 keV (+35 keV) with 0.3% and 1% bw

Heat load chopper

- A double chopper system removes heat load and defines short exposures
- Both choppers have variable exposure time to adapt to SR filling modes
- Heat load chopper absorbs 30 W
- Fast chopper defines short exposure time

	Exposure time (μs)
1 mm	9.45
3 mm	21.10
5 mm	31.04

Fast chopper

- A new version of the LImA is being developed to control and acquire data from multipanel detector
- New compression algorithms are being developed and tested to ensure data transfer
- NanoPeakCell combined with peakfinder tools for live feedback during acquisition

- A new developed timing system synchronises every step of the acquisition with the radiofrequency of the storage ring
- CITY and SSXbox are the two hearts of the system
- Heatload and Fast chopper are synchronised
- SSXbox propagate the clock to the data acquisition devices,
 MD3upSSX, X-ray detector and additional triggerings

- MD3upSSX integrates a specifically developed fast translating table
- Designed for enhanced fixed target, can accommodate other sample delivery methods

- The experimental hutch is being installed
- All components are received and being commissioned offline
- Jungfrau 4M is installed on "elevator" to deliver beam in EH2
- KB system characterised
- A new robotic system to mount/unmount fixed target support
- Storage units in humidity controlled environment

- Two possible ways to shine laser on samples are being developed: through OAV and sideway
- Laser to be delivered in June:
 - up to 500 hzrepetition rate
 - 400-2000 nm tunability + 355 nm
 - < 10 mJ power</p>

Xenon flash-lamp (2 µs pulse probe)

2-entry spectrophotometer (transmitted + reference signals)

Opto-mechanical setup with focusing objectives

Sample holder (microcrystals between thin UV-transparent plastic sheets)

Nanosecond tunable laser (2-5 ns pulse pump)

Laser signal mixing box (355 nm + [410 nm – 2000 nm] + CW (various wavelengths)

TR-icOS experiments are based on the pump-probe principle in which the pump signal is provided by a nanosecond pulse from a tunable laser [355 nm, 410 nm – 2000 nm] and the probe signal by the microsecond pulse of a xenon flash-lamp [250 nm – 700 nm] allowing for the measurement of transient UV-vis absorption spectra The European Synchrotron | ESRE

- Courtesy of Manuel Maestre Reyna (Academia Sinica, Taipei, Taiwan)
- Flavoenzyme, whose flavin goes from oxidised to negatively-charged semiquinone to neutral semiquinone to reduced during photoreaction
- Question: when does the semiquinone get protonated?

 \square protonation event between 150 µs and 200 ms (precise transition time still to be refined)

- Sample preparation laboratory
- Preliminary test of sample offline now possible on the injector bench
- Humidity controlled sample preparation station
- Fixed target loading station
- Support beginners and curious users to prepare SSX experiments
- Contact us if you want to run test with us

If you wish to use the can be found <u>HERE</u> . The
If you wish to use the HERE.

- Access to TR-icOS directly via A-form
- As to access other icOS facilities.
- Possible also via MX A-forms

Energy	10-20 keV + 35 keV	
Bandwidth	0.3% and 1% (ΔE/E)	
Flux	> 10 ¹⁵ ph/s	
Beamsize	0.6 x 0.4 μm ²	
Beam divergence	1.9 x 0.7 mrad	
Exposure time (Fast chopper)	10 - 20 - 30 μs	
Exposure time (HL chopper)	100-150 μs	
Repetition rate (initial)	925 hz (x2 possible)	

Photon Flux Estimation		
	values	UNITS
I measured =	4.00E+02	mA
Energy =	12.50	KeV
Thickness of Silicon photodiode =	300	μm
Thickness of aluminum =	30	μm
Aluminum transmission =	99.67%	(for 6 to 20 keV)
Thickness of air =	4	cm
Air transmission =	98.84%	(for 6 to 20 keV)
Flux photon =	1.046E+15	Number of photon

Shibom Basu Julien Orlans

ESRF Structural Biology Group

Hugo Caserotto Nicolas Coquelle Fabien Dobias

L apicii Dobic

David Flot

Jonathan Gigmes

Thierry Giraud

Gordon Leonard

Christoph Mueller-Dieckmann

Didier Nurizzo Anton Popov

Antoine Royant

Peter van der Linden

Sylvain Engilberge

Martin Byrdin

Philippe Jacquet

ESRF Building Infrastructure Group

Thomas Gerfaud Alvaro Ruiz ESRF Mechanical Engineering Group

Anne-Lise Buisson
Daphne Lorphevre

Carlos Muñoz Pequeño

Pascal Theveneau

ESRF Software Group

Antonia Beteva Samuel Debionne

Andy Gotz

Alejandro Homs Jerome Kieffer

Marcus Oscarsson

Olof Svensson

ESRF Detector & Electronics Group

Pablo Fajardo

Paolo Busca

Nicolas Janvier

Herve Gonzalez

Marie Ruat

ESRF Optics Group

Ray Barrett

Christian Morawe

Amparo Vivo

EMBL Synchrotron + Instrumentation Team

Victor Armijo

Florent Cipriani

Franck Felizas

Marcos Lopez

Gergely Papp

Jeremy Sinoir

Follow the progress

@DdS_ID29

Configuration 3

Parameter	Value	<pre>Image (Link for full resolution)</pre>
Divergence (mrad) (HxV)	1.9 x 0.7	10 μm MaxI:502128, AvgI:2
Flux (ph/s)	1015	
Distance (mm)	250	
Beamsize (μm) (HxV)	0.6 x 0.5	
Energy (keV) - Wavelength (Å)	10 - 1.24	
Bandwidth ΔE/E (%)	1	5 μm MaxI:62671, AvgI:0
Crystal size (μm)	10 - 5	
Exposure time (s)	10-6	The second of th
Sample thickness (mm)	0.01	
		5 μm - naked MaxI:62563, AvgI:0

