

ID29 Current Status and Post-EBS plans

Quick overlook of the current status

•The EBSL8 project

- Little changes since last year
 - New control PC with new name
 - "id29control"
 - Get rid of p1-id29

- Development and deployment of MXCuBE3
- Later this year installation of unipuck double gripper
- Installation of new slitbox with integrated XBPM

- December 2016 ESRF EBS workshop
 - 8 Science cases presented
 - Proposal for a Beamline for MX Synchrotron Serial Crystallography (SSX)
 - MX beamline with extremely High flux density for Serial crystallography experiments
- February 2017 SAC prioritized the 8 Science cases
- June 2017 Approval from Council
 - ID29 SSX is one of the two flagship EBS projects
 - Code name EBSL8

Present low beta and EBS electron beam parameters

Parameter	ESRF low Beta (ID29)	ESRF EBS
Electron beam energy [GeV]	6.04	6
Nominal current [mA]	200	200
Relative rms energy spread of electron beam []	0.001	0.00095
Horizontal emittance [nm]	4	0.132
Vertical emittance [pm]	5	5
Horizontal beta [m]	0.35	6.9
Vertical beta [m]	2.95	2.65
Horizontal Dispersion [m]	0.0308	0.00175
Horizontal rms electron beam size [µm]	48.5	30.2
Horizontal rms electron beam divergence [µrad]	106.9	4.37
Vertical rms electron beam size [µm]	3.84	3.6
Vertical rms electron beam divergence [µrad]	1.3	1.38

- With currently available sources
- In future a change of sources might be possible

 $0.5 \times 0.5 \text{ um}^2$

10 x 0.5 um²

- Two focusings for two different beamsizes
- Diffraction data from stills
- Larger bandwidth (1-2%) will increase Ewald sphere thickness
- Photon flux up to 10¹⁶ ph/s
- Exposure time down to 1 μs (or less...)

A TIMELINE

A NEW TYPE OF DETECTOR

- The detector we will need is under development by PSI, with a collaboration with ESRF
- It is expected to work at 2 khz with shorter integration time of 1 µs

- What from you, the Users?
 - Grow small crystals!
 - Move out of the comfort zone :-)
 - (R)Evolution on how crystal are measured, harvested, protected
 - Open up to the possibilities of new studies (RT structures, Time resolved structural changes, ...)